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Final Report
U.S. Army Contract No.W31P4Q-04-C-R279
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Cardinal Research LLC

Dr. Bernard Widrow
Dr. Victor Eliashberg

Mr. Max Kamenetsky

January 31, 2005

This report describes research performed under subject contract during June 1, 2004-
January 31, 2005. In reference to Proposal No. D041-01"-0270 entitled Cognitive Pro-
cessing Hardware Elements, the reported work pertains to Task 1 of section 4.2.1, Task
2 of section 4.2.2, Task 3 of section 4.2.3, and Task 4 of section 4.2.4, Task 5 of section
4.2.5, and Task 6 of section 4.2.6.

Task 1

This Task has the objective of identifying candidate DOD applications for cognitive infor-
mation processing. A cognitive memory system design has been proposed. The objective
of Task 1 is therefore to identify likely DOD applications for the proposed cognitive mem-
ory. A preliminary set of applications have been selected, and work has been done toward
their realization. These applications are:

1. Location and tracking of the position of an aircraft relative to a previously obtained
aerial photo. We believe that the precise location of an aircraft can be determined
by using a combination of optical images of the ground below and a previously
obtained wide area aerial photo of the ground below. Aircraft locations have been
determined to within one pixel, within several feet. Results are presented below.

2. Satellite surveillance of an airfield, with a cognitive memory used to automatically
detect and locate aircraft and determine their type. Results are presented below and
in an accompanying CD-ROM that demonstrates by means of a video the detection,
location, and identification of various aircraft types at an airfield of Diego Garcia
Island.

3. Use of a cognitive memory to identify large number of Chinese characters. Results
will be presented below.
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4. Recognition of human faces.

There are many other possible applications such as facial recognition and facial feature
identification, fingerprint analysis and recognition, etc., but the above three applications
have taken our attention.

Task 2

The objective of this task is to identify the algorithms and structures that would be
required for efficient real-time implementation. As we worked with selected applications,
we realized that the proposed cognitive memory structure would be suitable for finding
solutions. At the outset, all work was able to be done by implementing a small cognitive
memory with a conventional PC. A full-scale system could be implemented with a cluster
of PC's. However, we believe that more efficient and more parallel operation could be
obtained with a bank of DSP boards. The relative economies are not clear at the moment.
The PC architecture may not be the best, but PC's are in high-volume production and
are relatively cheap. Custom ASIC's would be another approach. It is too early now to
decide on final cognitive memory architecture. We must have a great deal more experi-
ence with applications and know of their speed requirements before we could design an
efficient general-purpose cognitive memory.

Task 3

The objective of this task is to computer simulate a small but practical cognitive memory
that could be used to implement the selected applications. This was done. We have a
MATLAB simulation of a cognitive memory that runs on a conventional PC. Application
results will be presented below.

Task 4

The objective of this task is to apply the computer simulated cognitive memory to the
selected applications. Very good results were obtained, and they are explained below.
This experience convinces us that the area of application for cognitive memory will be
very wide indeed.

Task 5

The objective of this task is to design an implementation of the cognitive memory by
means of custom parallel hardware. A design has been made based on FPGA technology.

Task 6

The objective of this task is to analyse the speed of performance of the custom par-
allel hardware and compare to that of computer implementation. This has been done and
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the speed of the system based on custom hardware would be about 1,000 times greater
than that of software implementation on a state-of-the-art 64-bit PC.

The Cognitive Memory Concept

The current design for the cognitive memory has been changed somewhat based on our ex-
perience with this work, but the basic ideas are essentially the same as originally proposed.

The cognitive memory design described herein is based on concepts derived from life ex-
perience, from the literature of psychology, psychiatry, and neurobiology [5, 9, 20, 30, 34],
and from years of experience in working with artificial neural networks and adaptive and
learning systems. Certain conjectures about human memory are key to the central idea.
The design of a practical and useful memory system is contemplated, a memory system
that may also serve as a model for many aspects of human memory.

The cognitive memory design would be able to store in a unified electronic memory
system visual inputs (pictures and sequences of pictures), auditory inputs (acoustic pat-
terns and sequences of patterns), tactile inputs, inputs from other kinds of sensors such
as radar, sonar, etc., and to retrieve stored content as required.

The memory would not function like a computer memory where specific data is stored
in specific numbered registers and retrieval is done by reading the contents of the specified
memory register, or done by matching key words as with a document search. The stored
sensory data would neither have key words nor would it be located in known or specified
memory locations. Incoming sensory data would be stored at the next available empty
memory location, and indeed could be stored redundantly at several empty locations. In
any event, the location of any specific piece of recorded data would be unknown.

Retrieval would be initiated by a prompt signal from a current set of sensory inputs
or patterns. A search through the memory would be made to locate stored data that
correlates with or relates to the present real-time sensory inputs. The search would be
done by a retrieval system that makes use of autoassociative artificial neural networks [13].

Applications of cognitive memory systems to analysis of aerial imagery, human fa-
cial images, sounds, rote-learning for game-playing, low-level battlefield decision making,
adaptive control systems, pattern recognition, and to other practical problems are being
explored.

The proposed cognitive memory architecture would be scalable so that larger memo-
ries could store more sensory data, but storage and retrieval time would not Increase with
memory size. How this works will be seen below.
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Design of a Cognitive Memory System

Figure 1 shows architectural elements and structures of a memory system that could
behave to some extent like human memory. It would have practical engineering value and
would be useful in solving military and commercial problems. This memory system is
intended to model human memory function, and its workings will be described in human

terms. The anatomical locations in the brain where the various architectural elements
and components might be contained are mostly unknown. What is important is that the
functions of these elements and components be performed.

The design of the cognitive memory system of Figure 1 is based on the following
hypotheses about human memory:

1. During a lifetime, images, sounds, tactile inputs, etc. are stored permanently, if
they were of interest when the sensory inputs were experienced. Human memory
has enough storage capacity for a long lifetime. Old recordings are not deleted for
lack of storage space.

2. Sensory inputs concerning a single object or subject are stored together as vectors
in a single "file folder" or "memory folder." When the contents of the folder we
retrieved, sights, sounds, tactile feel, smell, etc., are obtained all at the same time.
Sensor fusion is a memory phenomenon. The sensory signals are not fused, but they
are simply recorded together in the same folder and retrieved together.

3. Thoughts, conclusions, and problem solutions are also stored in memory, just like
sensory signals.

4. The same information stored in a memory folder may be stored redundantly in a
number of separate folders.

5. There may be many folders storing different information about the same subject,
recorded on different days. Suppose you have a Bernard Widrow folder containing
many different images of his face taken during a one hour visit, with various lighting
conditions, scale, perspective, rotation, translation, with zoom-in images of his eyes,
nose and other facial details. The folder also contains the sounds of the conversation.
After many visits, there will be many Bernard Widrow folders. During one of the
conversations, the name of his wife is mentioned. During retrieval, the contents of
that particular folder would need to be road in order to recall the namc of his wife.

6. Retrieval of stored information results from reading the contents of a folder when
triggered by a prompt from a set of current sensory inputs, or by a thought process.
Recalling the name of Widrow's wife would require a prompt, such as seeing Widrow,
and the need at the end of the conversation of saying, "please give my best regards
to Ronna Lee."
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7. Current sensory inputs would have very little meaning and would be puzzling if they
did not trigger the reading of the contents of folders containing related information.
Current sensory inputs would trigger or prompt the delivery of the contents of folders
containing experience that is related to the present input environment. For example,
listening to and understanding the speech of another person requires access to the
memory folders storing the sounds and associated meaning of each word and each
combination of words or phrases. Without memory and memory access, one could
hear speech but not understand it, similar to hearing a person speak an unknown
foreign language.

8. Retrieval of the contents of the sought after folder or folders is done by association
of the current sensory input or prompt signal with the folder contents. One would
need to scan through the folders to make the association and find the right folder
or folders. This needs to be done rapidly, using a method that allows the size of the
memory to be increased without increasing the retrieval time.

9. When a search is prompted by current sensory inputs and a folder containing related
information is found, all of the folder contents could provide self prompt signals to
find additional related folders that were not found in the initial search.

10. A problem-solving process could create new patterns from sensory inputs. These
new patterns could be stored in memory and could prompt new searches.

11. Associations are made by pattern matching or vector matching.

12. Features of patterns are portions of the patterns themselves, often zoomed-in por-
tions.

13. The memory is organized in segments. Each segment contains a finite number of
folders. Each segment contains its own retrieval system for searching its folders.
When a search is prompted, separate but parallel searches take place in all memory
segments simultaneously. Thus, search time does not increase with the number of
segIments or with the total size of the memory.

The Workings of the Cognitive Memory System of Figure 1

The cognitive memory system of Figure 1 has the capability of performing in accord
with all of the above hypotheses. Sensory inputs are brought into the system in the lower
left of the figure. Thewe inputs could be visual, auditory, tactile, olfactory, etc. or, in a
mechanistic system, optical, radar, sonar, etc. These current sensory inputs are made
available to a short-term buffer memory that is part of a cognitive problem-solver, to be
described below. The sensory inputs go through a "volition switch" before being stored.
This allows only "interesting" inputs to go to permanent storage. For Phase I research,
the volition switch will be bypassed. Ultimately, it may or may not be needed for a mech-
anistic system. This will be studied during Phase II.
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The memory input is a signal vector that goes to all memory segments simultaneously.
This same signal vector serves as a prompt signal for searching memory. Separate prompt
and memory input lines are shown in the figure because there is evidence that in human
memory, these are separate circuits [291. The memory input vector to be stored goes from
segment to segment looking for an empty folder. The memory input vector may be stored
in more than one folder and in more than one segment for redundancy.

The recalled memory output vector is delivered to the short-term buffer memory and,
along with the sensory input vector, feeds data to a cognitive problem-solver. The recalled
memory output vector may actually be the desired memory output. Or it may be used as
an important input to the problem-solver. A simple form of reasoning can be done by a
problem-solver which, at the present time, is envisioned to be based on the classical work
of Arthur Samuel. His checker-playing program embodies a reasoning process that plays
by the rules, plays tentative moves ahead, and makes optimized decisions in order to win
the game of checkers.

Game playing is a good model for a general reasoning process. Samuel's checker-player
dating back to the 1950's and 1960's Is still recognized as one of the finest pieces of work
done in the field of artificial intelligence [27, 28]. The problem-solver can best be imple-
mented by conventional off the shelf computer components (COTS) and will be a research
subject for Phase II.

Computed outputs from the problem-solver can be stored and later retrieved from
memory. Inputs to be stored by the memory come from both the current sensory inputs
and outputs from the problem solver. The prompt signal can come from current sensory
inputs or from self-prompt signals that result when the contents of a memory folder are
delivered to the problem solver and some of the contents are determined to be of interest
as prompts for further searches.

The entire cognitive memory system of Figure 1 could be built under Phase II. For
Phase I, a part of the system, the cognitive memory of Figure 2, has been built in software
and tested.

The applications to be presented below have been performed and implemented with
the cognitive memory of Figure 2. The details of how this memory works will be dis-
cussed next. The block diagram of Figure 2 is simpler than that of Figure 1, making an
explanation of how this works much easier.

Details of the Working of the Cognitive Memory Itself

The cognitive memory itself is shown in Figure 2. This has been built and tested, and has
been used to implement the applications described below. This memory is the principal
focus of the Phase I effort. The goal is to simulate it and analyze its behavior, and to
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find applications for it, and to devise hardware means for its practical implementation

In Figure 2, the memory input line delivers input vectors for permanent storage, look-
ing for empty folders in memory segment 1,2,... etc. Some of the memory folders are
large, some small, depending on the amount of storage space needed for the given mem-
ory input. Everything sensed, seen, heard, smelled, or felt, etc. is recorded in a folder.

The autoassociative neural networks are trained to produce output patterns that are
identical to their input training patterns. During training, their desired output responses
are taken from their inputs. After training this way, input patterns that have been
trained-in will reproduce themselves at the neural network output, and input patterns
that were not trained-in will not reproduce themselves at the neural network output. A
trained-in pattern will produce a low error when input and output of the neural network
are compared, and a high error results with patterns that were not previously trained-
in. When a trained-in pattern is presented to the autoassociative neural network, the
error is low and there is a hit. The training patterns for the autoassociative neural net-
works come from the patterns contained in the folders of the respective memory segments.

Each folder could contain visual, auditory, tactile, etc. patterns that were recorded
simultaneously. Each memory segment has many folders. A commutator continuously
scans the folder of the memory segment extracting every pattern present and using these
patterns to train the connected neural network. During training, these patterns are recy-
cled and trained over and over again, so that the neural network would be able to reliably
identify patterns that have been trained in and would be able to separate them from
patterns that were not seen before.

A prompt vector from the prompt line can initiate a search among all of the memory
segments simultaneously. The prompt signal is actually a sensory input signal in the
cognitive memory of Figure 2. The prompt signal goes to the inputs of all the autoasso-
ciative neural networks of all the memory segments. The neural networks deliver output
vectors that are compared with the prompt vector. If the difference is small, ie the cor-
relation is high, there is a hit, which means that the prompt signal has been seen before
and has been previously trained into the neural network that reported a hit. Therefore,
the associated memory segment has a folder that contains this pattern vector and other
related information. Once there is a hit, a search for this folder takes place. This is a
search through all the folders of the memory segment looking for a folder containing a
pattern that matches the prompt pattern. Once this folder has been found, its contents
are delivered to the memory output line.

Visual prompt signals are translated, rotated, and scaled in trying to make a hit with
the autoassociative neural network. Once a hit is made, one has just the right form of the
prompt pattern that will match one of the patterns in one of the folders. Responses of an
autoassociative neural network are very fast (particularly with parallel implementation).
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The neural network allows quick testing of various forms of the prompt signal, rotations,
translations, etc., to find the right form for searching the folders.

The neural networks do not undergo training when a prompt signal is present. The
prompt signal senses the response of the neural networks. These network are not trained
while they are being sensed.

We can speculate about human memory, about the need for sleep, and for different
kinds of sleep. We begin by speculating that the cognitive memory system of Figure 1
behaves like human memory. The sensors, the eye, ears, etc. are turned on during wake-
fulness and are continuously generating prompt signals. Everything seen or heard is being
tested to determine possible relationships to things seen before. This requires sensing all
of the neural networks. Therefore training does not take place during wakefulness. But
training is necessary because new interesting inputs are often observed and need to be
recorded in folders and to be used as training patterns. Also, in the human, the neural
networks are analog devices and can only maintain their trained responses if they are
continually trained or at least go through a training sessions each day. Therefore train-
ing is done during each night's sleep. REM (rapid eye movement sleep, dream sleep)
is special, and probably does not involve neural network training. This is a time when
the brain dreams and fantasizes and the brain, without sensory inputs, prompts itself
to recall stored images in random sequences, and REM sleep is probably necessary for
creativity. During this time, the neural networks are sensed and not trained. Training
therefore goes on during N-REM (non-REM) sleep. Sensing goes on during wakefulness
and during REM sleep. This paragraph is speculative. Further discussion with scientists

on the biological side will be necessary for confirmation and experimentation.

Returning now to Figure 2, it is clear that the purpose of the autoassociative neural
networks is to identify patterns that have been seen before. This seems to be fundamental
to memory and thinking.

When a sensory input is received and, being a prompt, causes an autoassociative neu-
ral network to indicate that there is a hit, this prompt vector is stored in prompt memory
(see Figure 2) as a result of a switch closing because of a hit signal. Now, as the fold-
ers are being scanned, when a pattern from one of the folders correlates with the stored
prompt, there is another hit and this closes a switch that connects and downloads the
contents of the folder to the segment's memory output line. Thus, if a visual, auditory,
or other sensory input vector corresponds to a pattern seen before, the contents of the
folder containing the original pattern are delivered as memory output. This could be the
output that is desired or it could be the input to a cognitive problem solver, as in Figure 1.
Prompting the cognitive memory causes it to output information related to the prompt,
regardless of where it might be stored in the memory.

The cognitive memory connected to a conventional computer (COTS) with a conven-
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tional memory makes what seems to be a powerful combination. The question is, what
kind of problems can be solved by making use of this combination? It Is too early to
exhaustively categorize these problems and impossible to see what they will be, at this
time. From limited experience, it seems that the range of problems to make use of the
cognitive memory will be very broad Indeed. Several applications have been worked on,
and the results follow.

Aircraft Location Based on Ground Imaging

A candidate DOD application for cognitive memory is that of location and tracking of
aircraft from optical imaging of the ground below. One might raise a question about this:
What does cognitive memory have to do with location? This is a good question, but one
should realize that a person waking up in the morning would not know how to go from
the bedroom to the kitchen without memory. A person walking on a path through the
woods would not know how to find the way home without memory. In one's own home
town, a person would not know how to drive from point A to point B without memory. So
memory of visual cues is critical to being able to navigate in every day life. This should
be kept in mind as we explore this candidate DOD application.

Figure 3 shows a portion of Manhattan island in New York. This is an aerial photo
taken some years ago.The photo was obtained from a web site. Superposed on the photo
is a grid of squares. Each square is 81x81 pixels. Within each square is a picture of a
small portion of Manhattan. Using Matlab, a 25x25 pixel picture was made from each
81x81 pixel picture. Matlab does this by interpolation and re-sampling.

Each 25x25 pixel picture was then recorded in a folder in memory segment 1 of the
cognitive memory of Figure 2. In each folder, the 25x25 pixel picture was recorded along
with a piece of additional information, the xy location of the pixel in the center of the
corresponding 81x81 pixel picture. Distances along the x and y directions were recorded
not in meters, but in pixel count.

In Figure 3, twenty five small pictures of 81x81 pixels are shown. The entire Manhat-
tan area had 900 small pictures. All 900 pictures were reduced to 25x25 pixels and were
trained into the autoassociative neural network.

In Figure 4, an aerial photo of a portion of Simi Valley, CA is shown. This was ob-
tained from a web site. Superposed is a grid of squares, each square being 81x81 pixels.
This picture has 2700x2200 pixels. The number of small pictures shown in the photo is
160. Covering the rest of Simi Valley, there were a total of 918 small pictures. Using
Matlab, a 25x25 pixel version of each 81x81 picture was made by interpolation and re-
sampling. The nine hundred and eighteen 25x25 pixel small pictures were recorded in
individual folders in memory segment 2. In each folder, the position of the center pixel of
the 81x81 pixel small picture was also recorded. The 918 pictures were trained into the
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autoassociative neural network of memory segment 2.

The autoassociative neural network of memory segment 1 and 2 both had 250 neurons
in their first layer. Since the input patterns had 25x25 pixels, each neuron had 25x25=625
weights. For the first layer, there were 625x250=156,250 weights. The second layer had
420 neurons, with 250x420=105,000 weights. The third layer had 625 outputs to corre-
spond with the 625 inputs, so the third layer had 625 neurons, each having 420 weights.
Therefore, the third layer had 420x625=262,500 weights. The total number of neurons in
the network was 1,295, and the total number of weights was 523,750. Implemented on a
Sun Blade 2000 workstation, the training time for the Manhattan patterns was 5.6 hrs.,
and the training time for the Simi Valley patterns also was 5.6 hrs.

The backpropagation algorithm was used with Matlab to train the autoassociative
networks. By careful programming, the training time was reduced, but by no means
optimized A next step will be to do the neural network with C- code, and that should
result in a 20 times speed-up. With really large problems, this would be implemented
with special hardware designed to do backpropagation neural networks. The speed-up
would be many orders of magnitude.

More important in most cases would be the sensing time not the training time. Train-
ing would generally be done off-line. Sensing the autoassociative networks, ie applying an
input pattern and seeing if the network output does or does not match the input, would be
done very frequently, and generally in real time. Sensing time for the above network was 83
milliseconds. This could be greatly speeded-up by implementation with special hardware.

Returning next to Figure 5, we can see the original aerial photo of Simi Valley in
Figure 5(a). In Figure 5(b), we see a blow-up of a portion of Figure 5(a). We see the
image of an airplane symbolizing the direction and path of flight.

The scenario that we present goes like this. Some time after an aerial photo was
taken, an airplane travels over the region carrying a telescope. By looking at the ground
through the telescope and comparing the image to the original aerial photo image, it
should be possible to locate the position of the flying airplane relative to the aerial photo
and to determine its heading direction. This has been done using the cognitive memory.
The process is like using a map to find your way. The map here is the original aerial photo.

The telescopic picture indicated within the red circle in Figure 5(b) is supposed to
be the same as would be obtained from a real telescope in a real airplane. We used the
aerial photo instead of flying a telescope-mounted airplane over Simi Valley. The tele-
scopic image within the red circle has a center that represents the exact location of the
airplane when shooting an image through the telescope. This is in effect a simulation
of an airplane shooting pictures of the ground through a telescope that is mounted to
look straight down when the airplane is in level flight. The red square within the circle
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is oriented in the direction of the flight path, in the direction from noise to tail of the
airplane. When shooting pictures with a real airplane, it is assumed, in accord with this
model, that the airplane would be in level flight at the moment that each picture is shot.
If not, the pitch, yaw, and roll would need to be measured and recorded and taken into
account. In any event, for the simulated airplane flight, we assume that the airplane flies
with level flight.

The red square within the telescopic circle bounds an image which we call the "mind's
eye". This image will be fed as a prompt to the autoassociative neural network. The size
of this square corresponds exactly to that of the grid square of Figure 4. For the moment,
assume that this is the case. For this to be so however, one would need to know the alti-
tude of the airplane that took the original photo of Simi Valley, and how big the squares
were in Figure 4 In reality one would not know these details, but if the correspondence
were not exact, image scaling would be necessary, and this could be done. Assume that
scaling is not necessary for the present experiment.

When the telescopic picture is shot, the telescopic image is feed to an onboard com-
puter. The mind's eye can be moved with software control. This would be the function of
the "visual cortex" in Figure 2. The mind's eye could be translated left-right, up-down,
and rotated relative to the telescopic image. The objective is to make a hit, ie to get
coincidence between the image in the mind's eye and just the right small picture from
one of the 918 small pictures of Simi Valley. These pictures have been trained into the
autoassociative neural network, and when the mind's eye is adjusted with the right posi-
tion and angle to get an image like the right original small picture, then there is a hit.

Once there is a hit, the mind's eye image is stored in the prompt memory, and a search
by scanning through the folders is made to find a matching image. When the correct folder
is found, the xy pixel coordinates of the center of the small picture is retrieved. The po-
sition of the airplane at the moment of shooting the telescopic picture is then determined
by the amount of left-right, up-down translation that was made to the xy pixel location
of the relevant small picture. The heading of the airplane relative to the original aerial
photo can be determined from the amount of rotation that was also needed to make the hit.

This procedure was performed using the aerial photo of Manhattan. The simulated
airplane flight was a straight line path and telescopic photos were assumed to be shot uni-
formly in distance over Manhattan. For each photo, a hit was obtained by rotating and
translating the mind's eye. From the coordinates of each small picture that was hit and
correcting for the number of pixels of translation and the number of degrees of rotation
required for each hit, the location of the airplane for each telescopic shot was calculated
and plotted with red crosses on the original aerial photo, shown in Figure 6.

The heading of the airplane at the time of each shot is indicated by yellow arrows.
The arrows, determined independently, point along a straight that turns out to be the
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exact airplane path. The red crosses are at the exact locations of the airplane at the
shot times. The result is that the position and the heading of an airplane relative to a
previously taken aerial photo can be determined down to the very pixel in x and y, and
the heading determined to within about one degree. From the aerial photo in Figure 3,
one can see that a city block is about 20x20 pixels. Position along each coordinate can
therefore be located to within a distance of one twentieth of a city block with this aerial
photo.

If the size of the mind's eye square did not match those of the original grid in Figure 3,
then scaling would be necessary in addition to translation and rotation, in order to make
a hit. The autoassociative neural network would need to be able to respond rapidly in
sense mode to a prompt input. Zooming in and out in addition to translating and rotat-
ing would greatly increase the number of prompt images that would be imputed to the
neural network in order to make a hit. A fast sensing response would make this feasible
in real-time applications.

All of the hits were done independently for the airplane track shown in Figure 6. These
hits were perfect in this case. If there were places on the ground where the texture was
not strong enough to make accurate hits, location points would be missed. One could
use larger small pictures in order to encompass a bigger area and to thereby gain some
texture in overall image.

The size of the small pictures and the size of the mind's eye have not been optimized.
Nor has the design of the autoassociative neural network in terms of number of neurons,
number of weights, and number of layers. There is a wide range for these parameters that
would give excellent results. This is a subject under study.

Figure 7 shows the track of an airplane flying in a circle over Simi Valley. The same
method was used to determine the position and heading of the airplane at the time of
each hit. The positions are indicated by blue crosses, and the airplane headings are in-
dicated by the red arrows. These arrows turned out to be tangent to the circular path
and uniformly spaced along the arc. Each location and heading was precisely the true
position and heading at the shot times.

By observing the sizes of houses, industrial buildings, roads, cul-de-sacs, and highways
in Figure 4, the spacing from pixel to pixel can be estimated to be approximately ten feet.
Location accuracy to within a position of a pixel corresponds to accuracy within about 10
feet. With higher resolution photography, even greater accuracy could be achieved. This
kind of accuracy is similar to that of GPS.

GPS locates things relative to absolute latitude and longitude on the earth surface.
The cognitive memory locates things relative to a previously taken aerial photo. By using
the cognitive memory, targets could be located on the aerial photo, and an airplane could
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find the targets with pinpoint accuracy by telescoping the ground. Moveable as well as
stationary targets could be found wherever they are.

Figure 8 pertains to one of the hits along the Simi Valley circular path. It shows how
position can be located at the exact pixel. Scanning the mind's eye in left-right, up-down
translation one pixel at a time, and scanning in angle with 10 degree increments around all
360 degrees and subsequently in 1 degree increments over a small angular range when get-
ting close to optimal, is being done. The plots in Figure 8 show percent mean square error
(MSE) as the mind's eye position is adjusted. Mean square error is the sum of squares of
the pixel differences between the input and output patterns of the autoassociative neural
network. A percent MSE below a set threshold indicates a hit. Figure 8(c) shows percent
MSE versus mind's eye rotation and translation along the x-direction with the y-position
optimized. Notice the deep sharp dip in MSE. This indicates a hit. With the y-position
set to one pixel less than optimum in Figure 8(b), there is still a dip when angle and x-
position are varied. The dip is not as deep, and does not indicate a hit, but does indicate
proximity to a hit. With the y-position two pixels less than optimum in Figure 8(a),
there is still a small dip, but not very pronounced. Figures 8(d) and (e) show this effect
for y-positions one and two pixels greater than optimum. Blow-ups of these figures follow.

Figure 9 shows the dip effect in a different way. With the y-position optimized, curves
are plotted for percent MSE versus rotation angle for various x-positions. The deepest
dip, indicating a hit, corresponds to the x-position optimized. The other curves corre-
spond to the x-position one to five pixels away from optimum, in both directions. From
these curves one can see that it is possible to pinpoint position at the exact pixel, and to
sense direction within one degree.

Satellite Surveillance of Diego Garcia Island

Diego Garcia is a British-owned island in the Indian Ocean. On this island is a U.S.
Air Force base used primarily for B52 and B2 bombers and KC135 tanker planes. A
satellite photo of Diego Garcia was obtained from a web site, and it shows aircraft parked
in a tarmac area adjacent to the principal runaway of the island. The objective of this ex-
periment is to locate and identify the parked aircraft, making use of the cognitive memory
of Figure 2. Being able to do this would allow constant automatic satellite surveillance
of Diego Garcia, and of any other airfield in the world.

Figure 10 is a satellite photo of a major portion of Diego Garcia Island. Zooming in,
the alrcraft parked near the main runway are clearly visible in Figure 11. The smaller
4-engine aircraft are believed to be KC135 tankers. The larger aircraft, each with 4 engine
pods, are believed to be B52's. The B52 actually has 8 engines, 2 engines per pod. That
much detail cannot be seen in the photos. Looking at the upper row of aircraft, counting
from left to right, there are two KC135's, then a space, then two B52's, then what looks
like a big grease spot on the tarmac but is believed to be a B2 stealth bomber, then two
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more B52's, then another big grease spot that is probably another B2, and finally two
buildings that are believed to be B2 shelters. Now looking at the lower row of aircraft,
from left to right, there are two KC135's, then a space, then two more KC135's, then a

big space, then three B52's, then a big space, and finally a KC135.

A zoomed-in picture of five KC135's is seen in Figure 12. Two are from the upper row,
and three are from the lower row. The upper row and lower row airplanes were parked in

opposite directions, and the shadows and perspectives are opposite for these planes. The
image of an upper row KC135 is not exactly a rotated version of the image of a lower
row KC135. They are somewhat different images. The same effects can be seen regarding

shadow and perspective for the B52's. From Figure 13 four zoomed-in images of B52's
can also be seen. Note the dark shadows from the wings and fuselages.

Two of the B52 images from Figure 13 were selected, one from the upper row and

one from the lower row. These were treated as two separate images because of the differ-
ences in perspective and shadow. More images were created by translating these images
left-right and up-down, so that their centers were moved over a (5pixel x 5pixel) grid.
The result was 25x2=50 different B52 patterns. Each of these patterns was recorded in a

folder of memory segment 1. In addition, each folder had the identification of the aircraft,
ie., B52, and its xy location in pixels. The airplane images in the folder were trained into
the autoassociative neural network.

Images from the satellite pictures of Figure 12 taken within the mind's eye (a square

area somewhat bigger than the B52 image) acted as prompts. The mind's eye was pro-
grammed to scan the entire satellite photo to look for hits. In each scanned position,
the mind's eye was rotated in 5 degree increments, looking for a hit, looking to minimize
the mean square error of the autoassociative neural network. When a hit took place, the
memory segment was searched for correspondence with the mind's eye image that caused
the hit, the folder was found, and the identification of the aircraft and its xy location
was downloaded from the folder.

A hit corresponded to the MSE of the autoassociative neural network being very low.

As the mind's eye scanned and came upon the image of a B52, it scanned about this image
up and down, left and right, making many hits because the B52 patterns were trained
with 25 different positions. For each position of the mind's eye, many rotations with 5

degree increments were tried to find the best fit. Getting many hits and identifying them
as B52, the computer screen showed "B52 Bomber." When the mind's eye scanned over
a KC135, various positions and rotations gave low MSE, but not really low, as when en-
countering, a B52 image. Then the computer screen indicated "unidentified aircraft." The
detection threshold can be pre-set. The detection criterion can be relaxed or tightened.

The structure of the autoassociative neural network was identical to that of the net-
work in the cognitive memory used to track aircraft positions over Manhattan and Simi
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Valley, the same number of layers, neurons per layer, and weights per neuron.

A video of the searching for B52's has been made and is part of this report in elec-
tronic form. The video has been recorded on a CD disc that is included with the hard
copy version of the report.

Another experiment was made using upper row and lower row images of B52's and
KC135's and the image of the B2 located on the upper row, between the B52's. The B52
and KC135 images were taken from Figures 12 and 13. The B2 image was taken from
Figure 14. Each image was translated over a (5pixel x 5pixel) grid. The total number of
images was 50 B52's, 50 KC135's, and 25 B2's. These were all trained into the cognitive
memory.

The aerial photo of Figure 11 was again scanned by mind's eye, with pictures taken
with 5 degree rotational increments. With this experiment, all of the B52's, the KC135's,
and the B2's were located and identified. Whenever a hit was made, the computer screen
indicated the type of aircraft and its location, x-pixel, y-pixel. A video of this search
and detection was made and is included on the CD as part of this report.

The cognitive memory could have been trained to locate and identify many other
types of objects on the island in addition to the aircraft, scanning over the entire aerial
photo. Once the cognitive memory has been trained to seek out and identify the types of
objects of interest, scanning and detections can be made at very high speed with parallel
hardware implementation.

Reading Chinese Characters

Experiments in reading Chinese characters were made. We had available a data base
of 20,00(0 Chinese characters. Ten thousand of these were trained into the autoassocia-
tive neural network, and when testing the trained network, the trained patterns were all
correctly identified as having been trained -in, and 97% of the non-trained patterns were
correctly identified as not having been trained-in. 3% of the non-trained patterns gave
false-alarm indications that they were trained-in. One of the problems is that there are
close similarities between certain of the Chinese characters, and especially between major
portions of Chinese characters. Although the results have been good, we are working to
improve the score.

Further experiments were made with a group of 1000 randomly selected Chinese char-
acters. They were trained into a cognitive memory. Figure 15(a) shows one of these
characters. Figure 15(b) shows the output of the autoassociative neural network. Ideally,
the input pattern should be perfectly reproduced at the neural network output. In this
case, the output was close to perfect, but there was an MSE of 0.25%. This error would
have been lower if the network had been trained longer. Certainly, the Chinese character
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of Figure 15(a) was recognized and identified.

The Chinese character of Figure 15(a) was then partially obscured, as shown in Fig-
ure 16(a). This obscured pattern was then inputted to the already-trained neural network,
and the output, shown in Figure 16(b), does not perfectly match the original input of Fig-
ure 15(a). This is to be expected. There is an MSE of 26.82%. In spite of the error, the
pattern of Figure 16(b) contains much of the original information. One could guess which
character this is. The distorted character could probably be recognized, but one would
need to accept a high MSE when calling this a hit.

All of the trained Chinese characters gave almost perfect responses at the autoasso-
ciative neural network output. The partially obscured patterns gave surprisingly good
outputs from the neural network, as can be seen from the examples of Figures 17 and 18.

The implications of this experiment are that it would be possible to read Chinese
printing even if the printing were not perfect. Also, if a cognitive memory were used
to find aircraft, tanks, etc. in aerial or satellite photos and these objects were partially
obscured, this may also be possible. This is a question being studied.

Figure 19(a) shows a non-trained-in pattern that was inputted to the neural network
that was trained on the Chinese characters, and Figure 19(b) shows the neural network
output. The output does not match the input In any way, indicating that the pattern
in Figure 19(a) was not trained-in. This is a check on the autoassociative network. It
worked the way it should have.

Recognition of Human Faces

Another possible application for the cognitive memory is that of face recognition. A
capability for doing this would be very valuable for military security and for homeland
defence. On the civilian side, thousands of surveillance cameras all over the U.S. are
producing continual video output data, and a means for automatic evaluation and anal-
ysis would make these cameras much more useful. Very high speed image analysis would
be needed for this type of work, and a means for doing this with parallel processing is
described below.

We begin with a very large number of photos containing people's faces stored in fold-
ers of the cognitive memory. Each folder contains the face and the name of the person.
The prompting photo is presented, and the question is, what Is the name of the person
in the photo? We need to associate the photo with photos of the same person that may
be stored in the folders. The associations are not easy to make because the size of the
facial images are not the same, the orientation and position of the faces are not the same,
and the brightness or luminance of the faces are not the same. Nevertheless, we shall
make these associations and comnect the unknown prompting pattern to one or more of
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Figure 20: Three photos of Bernard Widrow used for training

the known patterns stored in the folders. So do this, it would be necessary to translate,
rotate, scale, and adjust the luminance of the patterns.

The images of all the faces stored in the folders were trained into the autoassociative
neural network. This is the training data. The trained neural network was sensed by
applying to it the facial image in the prompting pattern. By adjusting the sensing pattern
with translation, rotation, scaling, and luminance, a hit was being sought. If the error,
the difference between the input and output patterns of the autoassociative network, was
below a threshold, then a hit was established. The folders were then searched for the exact
pattern that caused the hit. Once the folder or folders were found that corresponded to
the hit pattern, then the identification of the unknown prompt pattern could be made.

Figure 21: A photo of Juan Carlos Aragon, Victor Eliashberg and Bernard Widrow used
for sensing
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Figure 20 shows three photos of Bernard Widrow. All three were used to train the
autoassociative network. From each photo, many new ones were created by rotation,
translation, and scaling. There were seven different rotations, two degrees apart. There
were twenty five different left/right, up/down positions, one pixel apart, in a square array.
There were three different sizes or scaled versions of each picture. For each of the origi-
nal three pictures, there were now 525 pictures. Therefore the total number of training
patterns was 1,575 pictures. All of these patterns were stored in the folders and labeled
"Bernard Widrow". Training time was approximately 26 hours to bring the mean square
error to 0.25% or less for all the training patterns.

Figure 21 is a photo of Juan Carlos Aragon, Victor Eliashberg and Bernard Widrow.
This photo was the prompting image causing memory recall. This photo was scanned
with small moving window in an attempt to find an image that matched one of the 1,575
training patterns. Sensing the prompting image to find a hit was done with six different
window sizes, allowing scaling of the prompt image. The sensing window was translated
with twenty five different left/right, up/down positions, two pixels apart in a square array,
allowing accurate alignment. The image intensity within the window was varied with six

a)

b)

Figure 22: Sensing patterns obtained from Widrow's face with two window sizes a) straight
up, and b) rotated
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different intensity settings, allowing match of luminance with that of training patterns.
The window was rotated to three different angular positions.

Figure 22 shows the prompting photo with an illustration of how the window was
varied during sensing. Five patterns per second were sensed by the autoassoclative neural
network. Figure 22(a) shows two windows of different sizes on Widrow face, and Fig-
ure 22(b) shows these windows rotated. Each image within the window was applied to
autoassociative neural network in seeking a hit. The entire photo was scanned by moving
and changing the window. The error for the best fit to Widrow's face was 0.37%. The

error was about four times greater for the best fit to the face of Aragon and Eliashberg.
The error was about ten to twenty times greater for best fit to a typical background scene.
The system easily chooses Widrow's face for the lowest error. This is not a surprise since
three different images of Widrow's face were trained in.

Figures 23-27 show how the mean square error varies as the sensing parameters are
varied. These parameters are x-position of sensing window, y-position, rotation of the
window, scaling the window size, and brightness or luminance within the window. The
plots were made by first optimizing the window on Widrow's face, and varying each

shifting of the sensing window in the x direction
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Figure 23: Effects on mean square error due to left/right translation from the optimal
position
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parameter separately from the optimum point. These curves have a characteristic "V"
shape. They resemble the curves of Figure 9 that were obtained from navigation over
Simi Valley. These curves are smooth and essentially monotonic. Seeking the optimal

setting has been accomplished automatically by using the Sonthwell Relaxation Method,
adjusting one parameter at a time seeking its optimal value, then going to the next pa-
rameter, etc. When all of the parameters have been optimized, the cycle is repeated. The
cycle is repeated again and again until further reduction of error no longer happens.

For the experiments in facial recognition, we have used a 3-layer autoassociative neural
network having the following specifications:

"* The input patterns were 50x50 pixels.

"* The first layer had 1800 neurons, each with 2500 weights.

"* The second layer had 1500 neurons, each with 1800 weights.

"* The third layer had 2500 neurons, each with 1500 weights.

"* There were 5800 neurons total.

"• There were 10,950,000 weights total.

This network was implemented in software on PC with a 64-bit AMD Athlon chip with a
2.6GHz clock. The software used was Matlab64, from the Matlab neural network toolbox
for a 64-bit CPU, MATLAB 7 (R14). Once trained, this system can sense through the
10,950,000 weight network at a rate of 5 patterns per second. This same network could
be realized with external hardware connected to a host PC computer with a speed-up of
about a factor 1,000 for both training and sensing. How this could be done is explained
next.

High-Speed Hardware Realization

Many more applications for cognitive memory will open up if the speed of operation
could be increased. We have thought long and hard about this situation and propose a
two-step approach to high-speed realization. The first step would be based on the use

off the shelf FPGA chips mounted on circuit boards which are connected to a host com-
puter. The second step would involve the design and development of ASIC's that would
be mounted on circuit boards that may also be connected to a host computer. We have

been using the facial recognition system described in the section above as an example.
This system uses an autoassociative neural network containing over 10 million weights
and about six thousand neurons in three adaptive layers.

hnplementation with a 64-bit Athlon PC computer has given us a good deal of experi-
ence with the cognitive memory. The bottleneck in the system has been the autoassocia-
tive neural network. Precision and retrieval speed is limited by the ability of this network
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to sense input patterns to determine if a given input pattern has been seen before. Train-
ing the neural network has been done with the backpropagation algorithm, and the speed
of adaptation is limited by the rate at which the computer can perform this algorithm.

Implementation of the neural network with FPGA chips will give a speed-up in sens-
ing by approximately a factor of 1,000 over implementation with the Athlon PC, and will
give a speed-up in training by approximately a factor of 500 over the PC. Implementa-
tion with custom ASIC's will give an additional factor of 100 in speed-up for both sensing
and training. A speed-up of a factor of 1,000 would allow automatic real-time analysis
of airport surveillance camera video, for example. It would be possible to sense 5,000
patterns per second, with the ability of scanning and analyzing approximately 50 total
video images per second. Using ASIC's will not only be faster but will allow the circuit
boards to be smaller and in volume production, be cheaper.

We do not propose at this time to build an autoassociative network with ASIC's. It will
be essential to get a first experience with FPGA's. Having a neural network constructed
with FPGA's and connected to the PC will give us a high-speed digital realization with
which we will not only learn how to architect the system hardware, but it will also give
us a platform for experimentation and research into the fundamental properties of cogni-
tive memory. Questions of memory capacity, association, and retrieval will be able to be
explored efficiently. Building an autoassociative network with FPGA's is an important
first step.

A preliminary design for a multi-layer neural network interfaced to a host PC computer
will be described next. We begin with a brief discussion of the well known multi-layer
network and the backpropagation learning algorithm. Figure 28 shows a two-layer neural
network with three neurons in the first layer and two neurons in the second layer. The
first layer is fully connected to the input signals, and the second layer is fully connected
to the first layer. The sensing path for signal flow from the inputs to the outputs is shown
with solid heavy lines. Training of the weights is done by backpropagating the output
errors, the differences between the output responses and the desired output responses.
The backpropagation paths are shown with dashed lines.

When each input pattern is presented, the output errors of the second layer are cal-
culated and are used to determine the errors for the neurons of the first layer. By this
means, a gradient is calculated for every weight in every neuron in the network. These
gradient components are partial derivatives of the sum of the squares of the output errors
with respect to the individual weights. The sgm operators are sigmold functions, and the
sgm' operators are functions that are derivatives of sigmoids. How this works is explained
in detail in references [12,13,37,41].

To build the hardware, we only need to follow the scheme illustrated in Figure 28. The
sensing paths involve multiplying signals by weights, and summing. Each sum is applied
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to sgm and sgm' functions. The sgm and sgm' operations can be done in an attached PC
computer. This would simplify the hardware, yet would require transfer of signals from
the neurons summation points to the computer. The transfers take time, but their number
is equal to the number of neurons, which is in the thousands. Transferring weights from
the computer to the hardware is another story, since the weights number into the millions.

Transferring neuron input signals and output signals to and from the computer in-
volves thousands of transfers, and this is practical. Transferring weights can be also done
practically, as long as this is not done very often.

Transferring neuron input signals and output signals to and from the computer is a
good thing to do since the computer would then be able to control the neuron-to-neuron
connections. The architecture of the neural network could thereby be controlled by soft-
ware in the host computer. This kind of flexibility would be needed if the memory system
were used for research, and this flexibility would also be necessary in order to customize
the autoassociative network for specific applications. One would have a general purpose
neural network controlled with software in the host PC. It should be noted that the host
PC would also be able to do input pattern manipulations such as rotation, translation,
scaling, etc., as well as store the input patterns in folders. The neural hardware and PC
computer could work together as a system comprising a cognitive memory. Each piece of
the system would be doing what it is best suited for. The neural hardware would break
the bottleneck limiting the speed of the entire system.

A particular form of the backpropagation algorithm has been found to be most ef-
fective in this research. It is called "batch learning". Suppose for example that we are
training 10,000 patterns into the neural network. Each pattern would be presented and
the gradients for all the weights would be calculated by the backpropagation algorithm.
Instead of changing the weights in proportion to the gradients, the gradients are stored
in the computer. The next pattern is then presented, and the gradients are calculated.
They are then added to the first set of gradients. Then the next pattern is presented and
the gradients are found. They are added to the accumulated sums, and the process goes
on. After the 10,000 patterns have been presented, the gradients are averaged and the
weight changes are calculated. Then a new set of weights are calculated, and the entire
batch of training patterns has been presented and trained for one cycle. The batch cycle
is repeated over and over until the mean square error is brought down to the desired level.

With the hardware realization of the neural network, the new set of weights would be
calculated in the computer and then transferred to the weight memory of the external
hardware For the present example, over 10,000,000 weights would need to be transferred
from the computer. This is a lot of data, but the transfer would need to be done only at
the end of each batch cycle, not after the presentation of each training pattern, but after
the presentation of 10,000 training patterns. Thus, by doing batch training, the time for
transfer of weights has been reduced by a factor of 10,000 with this example. Transfers of
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neuron inputs and outputs back and forth to the computer involve thousands of pieces of
data. Now, transfers of the weights only involve thousands of pieces of data rather than
millions. The numerical operations in the neural circuits are comprised of multiplication
and some addition. This can be done in a highly parallel manner by the FPGA's. Thus,
the whole process of sensing and training can be done at very high speed, about 1,000
times faster than the computer alone for sensing and about 500 times faster for training
which involves a double operation for each training pattern, sensing and backpropagating
of errors.

The basic numerical operation for sensing involves multiplying by weights and forming
sums of products. The basic numerical operation for backpropagation of error involves
multiplying by weights and forming sums of products. This is the same as for sensing.
The hardware for sensing and error backpropagation can be the same, first utilized for
sensing and then for error backpropagation. The wiring is different, as can be observed
from inspection of Figure 28, and this can be achieved by the computer with software
corresponding to the network architecture.

The operations of sensing and error backpropagation are similar, using the same hard-
ware. In the remainder of this section, we will explain with a series of diagrams how
the neural hardware performs sensing. The understanding is that the workings of error
backpropagation are very similar.

Figure 29 shows a 3-layer network, fully connected. Figure 30 shows this network
and the design specifications that would allow it to function like the computer simulated
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S-'A Lwi * The number of Inputs Is 2500

A/ * The number of neurons in layer 2 Is 1500
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# The number of weights In layer 2 Is 1500*1800 =2,JOU,OUQ
* The number of weights In layer 3 Is 2500*1500 = 3,750,000

• The total number of weights is 1n0,950,0nn

Figure 30: The network that was used for facial recognition

x 0 SWin QW2n - - Wmn Axon n

W12 W22 Wrn2
X2 00:

W1l W21 Wml

N1  N2  Nm
n

UU Wmi xi

U I U2 Urn

yI=sgm(ul) y2=sgm(u 2) ym=Sgm(Um)

Figure 31: A single layer shown with "programmable logic device" notation
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Figure 32: Input pattern memory, weight memories, and multipliers for a single neuron
layer
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Figure 33: Connections between the host computer and the neural hardware for a 2-layer
network
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Figure 34: Implementation with FPGA's

network that was used for facial recognition. Figure 31 shows the functioning of a single
layer. The sigmoid operators will be realized by the host computer. Figure 32 shows
how the weight's memories and input pattern's buffer memory are connected to allow the
components of pattern vector and simultaneously the components of the weight vector be
shifted simultaneously, multiplied in parallel, and accumulated to produce the neuron's
summed outputs. These outputs are fed to the computer for application of the sigmoid
operator. Figure 33 shows how the host computer is interfaced to the neural hardware.
Each layer of the neural network could be mounted on a single printed circuit board. All
the boards could be made identical to each other. The computer will be able to control
which neulrons are to be used if more than the required number of neurons are mounted on
a given board. The boards are designed to have the maximum number of neurons that will
be required for any of network layers. Surplus neurons will be ignored by the computer,
under software control. Figure 34 indicates how a set of neurons could be implemented
with an FPGA. Each circuit board would have fifteen FPGA's, extra memory chips, and
control logic.

A Preliminary Proposal for Phase II Research

This section presents a preliminary proposal for a two-year Phase II research program.
We would propose a four-part project:

High-speed hardware implementation. This involves building an autoassociative neu-

53



ral network to connect to a PC computer. The neural hardware would be based on
FPCA's. Software to drive this hardware would also need to be developed.

Applications of cognitive memory. This development would be based on the Phase I
work on facial recognition, aircraft identification, aircraft navigation, extending this
work and testing and verifying with large data sets. Additional application areas
will also be developed based on the original work.

Commercial/Military product development. A set of products would be developed
based on Phase I experiences. A search engine based on facial images as prompts
rather than key-words will be formulated and developed for searching for photos in
a personal computer and on the web sites. An airport surveillance camera images of
people's faces. Similar systems could provide workplace and public building security.
These products would have military use as well as civilian use.

Basic Science. The basic science aspects related to better understanding of the cognitive
memory as a new means of computation and as a model for human memory.

An outline of our proposal can be discerned from a set of slides that were presented by
Dr. Bernard Widrow to DARPA on January 27, 2005. These slides are self explanatory.
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